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Abstract. The paper is a continuation of research on the application of a structural re-
analysis method - the Virtual Distortion Method - to Structural Health Monitoring. The
first approach, formulated previously in the time domain, suffered from a considerable
numerical cost. In order to reduce it, this paper presents an alternative approach, for-
mulated in the frequency domain thanks to the assumption of using harmonic excitation
(quasi-static problem). The hardware devices supposed to collect structural responses
are piezoelectric patch sensors. The software tool for damage identification solves a non-
linear least squares optimization problem by employing analytically derived sensitivities.
Strains are the analysed quantities, contributing to the objective function. Considerations
are restricted to skeletal structures and a simplified dynamic problem with no damping.
Effectiveness of the frequency-domain identification is demonstrated in numerical exam-
ples. Experimental verification is envisaged.

Keywords: damage identification, inverse problem, frequency domain, skeletal struc-
tures, reanalysis methods

1 Introduction
Vibration-based (low-frequency) Structural Health Monitoring (SHM) has gained a lot
of researchers’ attention in recent years. The main stream is concentrated on utilizing
ambient excitation and applying Operational Modal Analysis [1] to localize and quantify
damage. The environmental type of excitation has its weak points however, therefore the
newest trend is to enrich the OMA with eXogenous input (OMAX) of known character-
istic to facilitate damage detection [2]. Degradation of stiffness is usually examined in
SHM and damage-sensitive parameters (e.g. curvature [3], energy [4]) are defined to track
stiffness changes in structures. Beside the modal parameters, the antiresonance frequen-
cies [5] may successfully contribute to damage detection as well. Defining indicators
able to distinguish between the actual damage and the influence of environmental factors
(e.g. temperature) on structural response is a challenging research topic [6]. A num-
ber of effective methods for system identification and subsequent vibration-based SHM
have been elaborated e.g. Eigensystem Realization Algorithm [7], Stochastic Subspace
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Identification [8], Complex Mode Indicator Function [9], PolyMAX [10]. Some of them,
e.g. Least Squares Complex Exponential [11], have already become standards in industry
applications.

This paper continues to present the capabilities of a structural reanalysis method -
the Virtual Distortion Method (VDM) - in application to SHM. The VDM is a method of
structural reanalysis, which consists in imposing appropriate initial strains in the structure
in order to model required modifications of structural parameters in an efficient way. An
overview of VDM applications with short characteristics of other reanlysis methods, e.g.
Combined Approximations [12], can be found in [13]. The distinctive features of the VDM
are:

• exact (not approximate) formulation, capturing all system’s features in the influence
matrix

• ability to handle non-linear (piece-wise linear) constitutive law

• dynamic reanalysis in the time or frequency domains, enabling modification of both
stiffness and inertia parameters

The VDM-based time domain approach to SHM, proposed in [14], linked the software tool
for solving the inverse problem of identification via gradient-based optimization with the
hardware concept of utilizing piezoelectric patch sensors to collect structural responses
due to impulse excitation. The formulation of the VDM-based piezodiagnostics in the time
domain was general enough to handle an impulse excitation signal and required only a few
sensors for analysis. However it suffered from a considerable computational cost. This fact
spurred the development of an alternative approach, presented in this paper. The idea is
to transfer the problem to the frequency domain thanks to the assumption of applying
harmonic excitation, thus replacing the dynamic analysis with the quasi-static one. The
harmonic excitation is inherent in some vibroacoustic problems, e.g. rotating machinery,
or can be applied to real structures by shakers. Apart from the in-situ applications, it is
also commonly used in laboratory experiments.

The main point of this paper is to present a VDM-based methodology of damage
identification (location and intensity) for skeletal structures (trusses and beams) by con-
sidering not only stiffness but also mass modifications. It is assumed that the system does
not vary in time during measurements. A simplified dynamic problem with no damping
is considered. Consequently, resonance frequencies are avoided in analysis. Analytically
derived sensitivities are effectively utilized in an optimization algorithm leading to dam-
age identification thanks to solving an inverse problem. Piezoelectric sensors are assumed
to capture structural response to a low-frequency (up to 1kHz) harmonic excitation. Ex-
perimental verification of the proposed approach has been just announced.

2 Parameter modification by the Virtual Distortion
Method

2.1 General characteristic of VDM

The Virtual Distortion Method (VDM)[15] is conceptually similar to the initial strains
approach. Introduction of initial strains in structures was primarily proposed to model
plasticity. However, the local imposition of an initial strain leads to violation of equi-
librium conditions and the solution proceeds in iterations. On the contrary, the VDM
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approach is able to produce such solution in one step thanks to defining all local-global
interrelations in a structure in advance. The collection of all the local-global responses,
including information about structural topology, materials and boundary conditions, is
called the influence matrix within the framework of VDM. This matrix makes an essential
difference between the VDM and initial strains approach.

The VDM belongs to fast reanalysis methods in structural mechanics. This means that
an initial FEM response is necessary for introducing further modification by determining
proper fields of virtual distortions. A comparative review of reanalysis methods can be
found in [16], where equivalence between the VDM and Sherman-Morrison-Woodbury
formulas is proved.

The VDM has been used in various problems of structural design (e.g. prestress), op-
timization (e.g. topology remodelling) and control (e.g. damping of vibrations) thus far.
It has also turned out to be a promising tool for SHM. The first attempt to handle the
problem of damage identification using the VDM was made during the project PiezoDiag-
nostics [17]. Low-frequency impulse excitation (e.g. windowed sine pulse) was applied and
time responses of a structure were captured by piezoelectric transducers. The electrical
responses (voltage) of the transducers were proportional to mechanical strains. The first
formulation assumed only stiffness degradation as a damage modelling parameter. The
extension of the VDM remodelling approach, including mass modifications in the time
domain, was described in [13], in which a review of all VDM applications to date can be
found.

2.2 Influence matrix

The paper is concerned with skeletal structures. In further description let us assume that
the lowercase indices, e.g. i, refer to elements in local co-ordinates and the uppercase
ones, e.g. M, to nodes in global co-ordinates. Einstein’s summation convention has been
adopted. Underlined indices are exempt from summation.

Let us first demonstrate the concept of the influence matrix for truss structures in
static analysis. Each component of the influence matrix D ε

ij describes strains in the truss
member i caused by the unit virtual distortion ε0

j = 1 (unit axial tensile strain for trusses)
applied to the member j. The unit virtual distortion is imposed in numerical calculations
as a pair of self-equilibrated compensative forces of reverse signs (equivalent to a unit
strain) applied to the nodes of the strained element. The influence matrix D ε

ij collects
n influence vectors, where n denotes the number of truss elements. In order to build an
influence vector, a solution of a standard linear elastic problem by the Finite Element
Method has to be found:

KMN uN = fM (1)

with KMN being the stiffness matrix, uN - displacement vector and fM - force vector
in global co-ordinates. Usually, the obtained global displacements serve to calculate a
corresponding response in local strains:

εi = GiK uK (2)

with GiK being the geometric matrix, which transforms global degrees of freedom to local
strains. The response in strains is most often considered for building an influence vector.
However, storage of any other required response, i.e., displacements, stresses or forces, is
also useful.
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The external force vector f in (1) corresponds to two compensative forces (axial tensile
forces in case of truss structures) applied to a structural member, equivalent with appli-
cation of a unit strain to the unconstrained member (see the diagonal element in Fig. 1,
taken out of structure, subjected to a pair of forces). The response of the structure to the
imposition of the unit virtual distortion ε0

5 = 1 is depicted by the deformed configuration
in Fig. 1.
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Figure 1: Deformed structural configuration as a response to a static virtual distortion.

Thus to build the influence matrix D ε
ij, n solutions of a linear elastic problem have to be

found. The set (1) has to be solved with n different right-hand sides corresponding to n
pairs of compensative forces applied successively in each structural member. This way,
the influence matrix stores information about the entire structure properties including
topology, material characteristics and boundary conditions in calculation of structural
response.

Note that the static influence matrix for statically determinate structures becomes
identity (zero redundancy means no inter-relations between members) and the VDM loses
its major tool (only in statics).

Analogously, the influence matrix can be built in dynamic analysis, where the response
due to impact load in the first time step is collected. Integration of the equations of motion
is performed by the Newmark algorithm over some predefined period of time. In order to
build the influence matrix in dynamics, a pair of self-equilibrated forces equivalent to unit
strain (analogously to statics) is applied to a truss member in the first time step only.
Such a perturbation introduced to the structure is called an impulse virtual distortion (see
Fig. 2). In subsequent time steps, the influence of the distortion on the structure is exam-
ined over the discretized time period. Structural response in each time step corresponds
to an influence vector in statics, so the collection of such responses from all time steps
provides an influence ”vector” in dynamics. This vector has an extra dimension, which
is time. An assembly of dynamic influence ”vectors” constitute the dynamic influence
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”matrix”, which has two dimensions corresponding to the number of structural members
(like in statics) and the third dimension - time. Generally, the dynamic influence matrix
is time dependent, however for harmonic excitation, it becomes quasi static, because only
amplitudes of responses are stored. The influence matrix for harmonic excitation, further
considered in the paper, does not depend upon time, however it does depend upon the
frequency of excitation.
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Figure 2: Impulse virtual distortion applied in an element.

2.3 Stiffness modelling in truss elements

Let us confine our considerations to truss structures in the elastic range first. Let us
consider introducing a field of initial strains ε0

j (called virtual distortions) into a truss
structure. This action will induce residual displacements and strains in the structure,
expressed as follows (cf. [15]):

uR
K = B ε

Kj ε
0
j (3)

εR
i = D ε

ij ε
0
j (4)

The matrixB ε
Kj collects structural responses in displacements to the unit virtual distortion

ε0
j = 1 equivalent with the unit strain. The matrix D ε

ij collects corresponding structural
responses in strains. Both matrices are marked with the upper subscript ε, which indicates
the fact they were built due to imposition of strain-like virtual distortions. The two
influence matrices are related by the geometric matrix GiK (cf. (2)) as follows:

D ε
ij = GiK B

ε
Kj (5)

Residual stresses are expressed by:

σR
i = Ei (D

ε
ij − δij) ε0

j (6)

where Ei denotes the Young’s modulus and δij – the Kronecker’s delta.
Assume that application of external load to the structure provokes linear elastic re-

sponse uL
K , εL

i , σL
i , which will be superposed with the residual response uR

K , εR
i , σR

i . Thus
in view of (3), (4), (6) we get:

uK = uL
K + uR

K (7)
εi = εL

i + εR
i (8)

σi = σL
i + σR

i = Ei (εi − ε0
i ) (9)
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Relation between element forces pi and stresses σi is known via the cross-sectional areas
Ai:

pi = Aiσi (10)

Let us now take into account structural geometry modifications exemplified by changes of
cross-sectional area of a member. This means considering of a modified value Âi. In view
of (9) and (10), we can express element forces in the original structure with introduced
virtual distortion field (called distorted structure) and in the modified structure, as follows:

pi = EiAi (εi − ε0
i ) (11)

p̂i = Ei Âi ε̂i (12)

The main postulate of the VDM in static remodelling requires that local strains (in-
cluding plastic strains) and forces in the distorted and modified structure are equal:

εi = ε̂i (13)
pi = p̂i (14)

This postulate leads to the following relation:

EiAi (εi − ε0
i ) = Ei Âi εi (15)

Equation (15) provides the coefficient of the stiffness change µi for each truss element i
as the ratio of the modified parameter Âi to the initial one Ai:

µi =
Âi
Ai

=
εi − ε0

i

εi
(16)

Note that the coefficient µi may be equivalently expressed as the ratio of the initial to
modified Young’s modulus of a truss element. If µi = 1 we deal with an intact structure.
Variation of the coefficient in the range 0 ≤ µi ≤ 1 means degradation of stiffness and
in the range µi ≥ 1 increase of stiffness. Substituting (4), (8) into (16) we get a set
of equations for ε0

j , which must be solved for an arbitrary number of modified elements
(usually small compared to all elements in the structure), described by a coefficient µi
different than 1: [

δij − (1− µi)D ε
ij

]
ε0
j = (1− µi) εL

i (17)

In dynamics, a residual response is a discrete convolution of the influence matrix and
virtual distortions. The time-dependent residual displacement, strain and stress vectors
can be expressed as follows (cf. (3), (4), (6)):

uR
K(t) =

t∑
τ=0

B ε
Kj(t− τ) ε0

j(τ) (18)

εR
i (t) =

t∑
τ=0

D ε
ij(t− τ) ε0

j(τ) (19)

σR
i (t) = Ei

(
t−1∑
τ=0

Dε
ij(t− τ) +Dε

ij(0)− δij

)
ε0
j(τ) (20)
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All the relations for statics are valid for dynamics as well. While most quantities vary in
time, the stiffness change coefficient, defined analogously to (16), remains time-independent:

µi =
Âi
Ai

=
εi(t)− ε0

i (t)

εi(t)
(21)

The set of equations to be solved for distortions in dynamics looks analogously to (17):[
δij − (1− µi)Dε

ij(0)
]
ε0
j(t) = (1− µi) ε 6=ti (t) (22)

where ε 6=ti (t) denotes strains cumulated before the current step t:

ε 6=ti (t) = εL
i (t) +

t−1∑
τ=0

D ε
ij(t− τ) ε0

j(τ) (23)

Note that the matrix on the left-hand side of (22) is constant in time. Only the right-hand
side vector of (22) has to be modified in every time step, according to (23). Similarly to
(17), the set (22) may be local if structural remodelling is performed. In identification
problems however, in which the location of a damaged/modified member is sought, the
set (22) concerns all elements potentially changed (usually the whole structure).

2.4 Mass modelling at truss nodes

In dynamic analysis, virtual distortions modelling stiffness changes, considered in section
2.3, are not sufficient to describe structural behavior completely. There is a need to
introduce another perturbation, able to model inertia changes. To this end, a single,
unequilibrated unit force is applied to a node of the structure in directions corresponding
to degrees of freedom (see Fig. 3).
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Figure 3: Impulse force distortion applied in the direction of DOF at a node.

The unbalanced force is applied only in the first time step, so this kind of perturbation
is called an impulse force distortion f 0

L. Consequently, a relevant influence matrix Bf
KL,

collecting response in displacements to impulse force distortions, is built. Thus, in case of
inertia changes, the residual displacements and strains (cf. (18), (19)) are expressed as:

uR
K(t) =

t∑
τ=0

Bf
KL(t− τ) f 0

L(τ) (24)

εR
i (t) =

t∑
τ=0

Df
iL(t− τ)f 0

L(τ) (25)
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where the relation between matrices Df
iL and Bf

KL is analogous to (5):

Df
iL = GiKB

f
KL (26)

Differentiating (24) twice with respect to time gives:

üR
K(t) =

t∑
τ=0

B̈f
KL(t− τ)f 0

L(τ) (27)

Let us now take into account structural mass modifications accompanying the changes
of cross-sectional area of a member. We can express simplified equations of motion for
the distorted and modified structures as follows:

MKL üL(t) +KKL uL(t) = fK(t) + f 0
K(t) (28)

M̂KL
ˆ̈uL(t) +KKL uL(t) = f̂K(t) (29)

The main postulate of the VDM in dynamic remodelling says that inertia forces and
accelerations in the distorted and modified structure are equal. Taking this into account
and subtracting (28) from (29), the relation for determination of impulse force distortions
is obtained:

∆MKL üL(t) + f 0
K(t) = 0 (30)

where ∆MKL determines a modification to the global mass matrix:

∆MKL = M̂KL −MKL =
∑
i

(µi − 1)M i
KL (31)

in which the matrixM i is the consistent mass matrix for element i after transformation to
the global coordinate system. The summation in (31) denotes aggregation over all finite
elements i. Sometimes, the aggregation does not have to be performed. Each component
of ∆M (corresponding to an element) is stored separately, which enables to account only
for the locations subject to a change. This is important in remodelling the design, but
not the case of an identification problem in which modified location are to be found.

Substituting (27) into (30) and rearranging, the following set of equations is obtained,
with the unknown vector f 0

L, which models mass changes:[
δKL + ∆MKM B̈f

ML(0)
]
f 0
L(t) = −∆MKM ü6=tM (t) (32)

where ü 6=tM (t) denotes strains cumulated before the current step t:

ü6=tM (t) = üL
M(t) +

t−1∑
τ=0

B̈f
ML(t− τ) f 0

L(τ) (33)

Note that the set (32) is local (only modified locations are considered) in case of design
remodelling and global in case of parameter identification (all locations are potentially
subject to a change).
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Figure 4: Virtual distortion states for a beam element.

2.5 Modifications in beams

For a 2D beam element there are 3 components of virtual distortions that have to be
applied. The 3 distortion components correspond to 3 states of deformation (see Fig. 4)
in orthogonal base, obtained through the solution of the eigenproblem of the 2D beam
element stiffness matrix. So apart from the axial type of distortion εi (as for trusses), the
beam distortions also include pure bending κi and bending plus shear χi terms.

Further in the paper if a Latin lowercase index describes a quantity for a beam element,
one should remember that it refers to a triplet of the above-described distortions (not
a single axial strain). Thus, for the 2D beam model, apart from the modification coefficient
corresponding to axial strain (cf. (21)), also analogous coefficients for bending (the ratio
of the modified Ĵi to initial Ji moment of inertia) may be defined:

µεi = µA
i =

Âi
Ai

=
εi(t)− ε0

i (t)

εi(t)
(34)

µκi = µJ
i =

Ĵi
Ji

=
κi(t)− κ0

i (t)

κi(t)
(35)

µχi = µJ
i =

Ĵi
Ji

=
χi(t)− χ0

i (t)

χi(t)
(36)

As axial response for the 2D beam element is independent from bending/shear, we can
practically distinguish two coefficients for analysis i.e. µεi denoting axial stiffness change
and µκi denoting bending stiffness change. As a consequence, the consistent mass matrix
6 x 6 is divided into two parts - the first one containing only the cross-sectional area Ai
of a beam and the second one containing only its moment of inertia Ji. The global mass
matrix is assembled as:

MKL =
∑
i

(
A

M i
KL +

J

M i
KL

)
(37)

where i denotes a part of the mass matrix in global coordinates, corresponding to the
beam element i. The increment of mass (cf. (31)) is then expressed as:

∆MKL = M̂KL −MKL =
∑
i

(
(µA

i − 1)
A

M i
KL + (µJ

i − 1)
J

M i
KL

)
(38)

3 Identification problem for harmonic excitation

3.1 Problem formulation

A steady-state problem is characterized by continuous-in-time harmonic excitation of the
form:

f(t) = f sin(ωt) (39)
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where f , ω denote amplitude and frequency of the exciting force, respectively.
This assumption significantly simplifies considerations of the equation of motion as all
mechanical quantities and their derivatives vary in the same harmonic manner e.g. dis-
placements are expressed as:

u(t) = u sin(ωt) (40)

Therefore it is quite sufficient to analyze only time-independent amplitude values of the
quantities. Consequently, the dynamic problem becomes quasi static, e.g. relations (24),
(25) have the same form, but with no time dependency.

As indicated in section 2, we would like to consider both stiffness and mass modifi-
cations in the structure e.g. in case of displacements both residual responses (18) and
(24) have to be considered. Assuming the two kinds of modifications and taking into
account relation (39), the equations of motion for the distorted and modified (with mass
and stiffness changes) structures can be expressed as (cf. (28), (29)):

−ω2MKL uL +KKL

(
uL − u0

L

)
= fK + f 0

K (41)

−ω2 M̂KL ûL + K̂KL ûL = fK (42)

where the distortion u0
L, expressed in global (system) coordinates and introduced solely

for the simplicity of notation in (41), corresponds to the stiffness-modelling distortion ε0
j ,

expressed in local (element) coordinates. Subtracting (41) from (42) leads to the relation
for f 0

K , similar to (30):

−ω2 ∆MKL uL + f 0
K = 0 (43)

Note that to obtain (43), the static postulate of VDM (equivalence of element strains
and forces - cf. (13) – (15)), expressed in global coordinates, was used:

uL = ûL (44)

KKL (uL − u0
L) = K̂KL ûL (45)

When both stiffness and mass changes are analyzed, strains in elements depend on both
the distortions ε0

j and f 0
L:

εi = εL
i +D ε

ij ε
0
j +D f

iL f
0
L (46)

Analogously, displacements corresponding to global degrees of freedom are expressed by
the following relation:

uM = uL
M +B ε

Mj ε
0
j +B f

ML f
0
L (47)

Substituting (46) to (16) and (47) to (43), a set of j + L equations is assembled:[
δij − (1− µi)D ε

ij −(1− µi)D f
iL

−ω2 ∆MKM B ε
Mj δKL − ω2∆MKM B f

ML

] [
ε0
j

f 0
L

]
=

[
(1− µi) εL

i

ω2∆MKM uL
M

]
(48)

The set is local i.e. variables ε0
j and f 0

L are confined to the modified locations only (relevant
elements or degrees of freedom). It is solved using an SVD solver.
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3.2 Optimization issues

In most approaches to damage identification, the measured quantity is acceleration, be-
cause it is relatively easy to obtain. However the raw acceleration signal in time is never
used directly – it requires FFT processing to transfer the analysis into the frequency do-
main. In the proposed approach a different quantity is measured. It is namely strain in
time, measured by piezo-transducers, which is then directly used in the VDM time do-
main approach (cf. [14]). This paper is focused on harmonic excitation thanks to which
only frequency-dependent amplitudes of strains are examined. Thus we can speak about
the VDM frequency domain approach. One should note that there is no need for an FFT
processing of the time signal as performed in standard frequency-domain methods.

As often in the parameter estimation procedures, we pose the identification task as
a nonlinear least squares minimization problem with the objective function expressed in
strains:

F (µ) =
∑
nω

(
εk − εM

k

εM
k

)2

(49)

The function (49) collects responses from selected nω frequencies of operation and from
k sensors, placed in those elements where non-zero strains of high signal-to-noise ratio
are measured. The strain εk in an arbitrarily selected location k is influenced by virtual
distortions ε0

i , which may be generated in any element i of the structure (cf. (4), (8)).
One should also note that the modification coefficient µi, quantifying potential damage
and used as a variable in optimization, depends upon the virtual distortions ε0

i nonlinearly
(cf. (16)). As the VDM-F approach is quasi static, the number of sensors has to be equal
to the number of potentially modified locations for the sake of uniqueness of solution.
The preceding statement is valid only when one frequency of excitation is used - for more
frequencies, the number of sensors can be proportionally reduced (at least formally).
Hence, if the whole structure is to be inspected for a given frequency, strain in every
member must be measured. This is the major drawback of the approach.

Natural constraints are imposed on the modification coefficient µi, which is non-
negative by definition (cf. (16)):

µi ≥ 0 (50)

If degradation of a member is considered, another constraint has to be imposed on µi:

µi ≤ 1 (51)

Using (8), (19), (25), the gradient of the objective function (49) with respect to the
optimization variable µi is expressed as:

∇F i =
∂F

∂µi
=
∂F

∂εk

(
∂εk
∂ε0

j

∂ε0
j

∂µi
+
∂εk
∂f 0

L

∂f 0
L

∂µi

)
=
∑
nω

2

(εM
k )2

(
εk − εM

k

)(
Dε
kj

∂ε0
j

∂µi
+Df

kL

∂f 0
L

∂µi

)
(52)

The partial derivatives ∂ε0j
∂µi

and ∂f0
L

∂µi
can be easily calculated by differentiating relation (48)

with respect to µi, performed nω times, independently for each considered frequency ω:[
δij − (1− µi)D ε

ij −(1− µi)D f
iL

−ω2 ∆MKM B ε
Mj δKL − ω2∆MKM B f

ML

][ ∂ε0j
∂µi
∂f0

L

∂µi

]
=

[
−εi

ω2MKM uM

]
(53)
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Note that the left-hand side matrices in (48) and (53) are alike, which simplifies computa-
tions. Only the right-hand sides vary. The optimization variable µi is updated according
to the steepest descent method:

µ
(n+1)
i = µ

(n)
i − αF (n) ∇F (n)

i

[∇F (n)
i ]T∇F (n)

i

(54)

Superscript (n) denotes values in current iteration and (n + 1) in subsequent iteration.
The constant α varies in the range 0.1÷ 0.3.

3.3 Numerical algorithm

Numerical algorithm solving the quasi-static inverse problem of parameter identification
for harmonic excitation performs the following steps:

A. Initial calculations

(1) calculate response εL
k of the intact structure subjected successively to nω harmonic

excitations of different frequencies, using a numerical model

(2) determine measured response εM
k of the structure with introduced modifications

using k sensors in experiment (alternatively, simulate the measured response nu-
merically)

(3) compute influence matrices D ε
ij, B

ε
Lj, D

f
iL, D

f
ML for nω frequencies of excitation

(4) set initial value of optimization variable to unity µi = 1, which implies ∆MKL = 0,
ε0
i = 0, f 0

L = 0, εk = εL
k , uL = uL

L.

B. Iterative calculations

(1) store current value of the objective function (49) as former value Ffor

(2) solve the set (53) for partial derivatives nω times

(3) calculate the gradient ∇F i using (52)

(4) determine next value of the variable µ(n+1)
i using (54)

(5) update ∆MKL using (31) or (38)

(6) solve for distortions ε0
i , f

0
L using (48) nω times

(7) update εi, uL using (7) and (8) nω times

(8) calculate current value of the objective function Fcur

(9) check termination criterion – if Fcur
Ffor
≤ 10−3 then STOP else go to (B1).

Note that the above algorithm can be first used at the stage of numerical model calibra-
tion, when both the measured εM

k and calculated εL
k responses refer to the intact structure.

Subsequently, the same algorithm can be applied for identification of stiffness/mass mod-
ifications introduced to the structure. Then the measured response refers to the analyzed
modification scenario.
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4 Numerical examples

4.1 2D truss structure

As a numerical example let us consider the 2D truss structure shown in Fig. 5. The initial
structure consists of 20 steel elements, for which the following parameters are assumed:

• cross-section area: A = 10−4 m2

• Young’s modulus: E = 210GPa

• density: ρ = 7800 kg
m3

• height and width of a single section: 1m

• amplitude of the harmonic load: P = 200N

Steady-state approach (VDM-F)

In the presented frequency-domain approach, strain responses (amplitudes) are measured
by sensors located in all elements using different excitation frequencies ω.

The modifications of cross-section area µi =
Âi

Ai
in some truss elements were applied

(see Fig. 5). The response of the modified structure, stored in the vector εM
k , was computed

numerically and then employed for the calculation of the objective function (49). The
vector of the modification parameters µi was iteratively recomputed according to part (B)
of the numerical algorithm. Let us follow the case 1, when only one harmonic frequency,
ω = 700 rad

s , is used. In this case, 157 iterations had to be performed to fulfill the termina-
tion condition (B9). The identified modification parameters indicate possible defects and
for some elements are under- or overestimated (see Fig. 6). For the case 2, it is assumed
that the measurements are collected for 4 frequencies ω = [100, 700, 2100, 3650]T rad

s in-
dependently. Thus the dimension of the ”vector” εM

k is 20 × 4 and for each frequency ω,
respective influences matrices have to be calculated. This time, the sufficient number of
iterations was only 51 to fulfill the termination condition. A comparison of the identified
modification parameters in both cases is shown in Fig. 6. The computational time of
damage identification in both cases was similar (ca. 1 min.) on a 3 GHz PC.
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Figure 5: 2D truss structure with introduced modifications.

In practice, measured responses are accompanied by noise, thus it is advisable to in-
clude it to numerically computed responses for the modified structure. Therefore random
noise affecting every strain amplitude was applied according to the following formula:

ε̃M
k = εM

k (1 + rk) (55)

13



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

element no.

µ i

 

 

true defects
identified (case 1)
identified (case 2)

Figure 6: Identification results for 1 (case 1) and 4 (case 2) excitation frequencies.

where rk is an arbitrary value from the interval 〈−0.1, 0.1〉. A comparison of the simulated
response (for a chosen frequency) for the original and modified structure, with and without
noise, is presented in Fig. 7.
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Figure 7: Influence of noise on simulated strain responses.

The described damage identification for the case 2 (cf. Fig. 5) was repeated for noisy data.
The termination criterion of inverse analysis could not be met because of the noise, so the
process was stopped after 300 iterations (Fcur

Ffor
≈ 10−2). However the obtained modification

parameters distribution indicate possible defects in the structure (see Fig. 8).
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Figure 8: Identification results for pure and noisy data (case 2).
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Time-domain approach (VDM-T)

The previously presented VDM-F approach is a frequency-domain analysis based on the
amplitudes responses measured in every element of the structure. On the contrary, the
time-domain approach (VDM-T) allows to identify the stiffness modification parame-
ters µi using only a few sensors collecting time-dependent responses. The same damage
scenario is considered as for the VDM-F approach (cf. Fig. 5). However the stiffness
modifications (µi =

Êi

Ei
) are related to Young’s modulus reductions in truss elements (not

cross-section areas like in VDM-F), i.e. no mass modifications are accounted for.
In Fig. 9a the excitation signal – a windowed sine pulse with the maximum amplitude

of P = 200N – is depicted. Strain responses are collected from only four selected vertical
elements (cf. Fig. 5). An example of strain response for the original and modified structure
in element No. 1 is shown in Fig. 9b. For the other three sensing elements, the collected
responses are similar. The inverse analysis using VDM-T leads to correct values, however
considerable computational time is required to complete it (ca. 300 min.). The results of
damage identification for VDM-T and VDM-F are compared in Fig. 9c.
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Figure 9: 2D truss structure: (a) – excitation signal, (b) – strain responses in element no.
1, (c) – results of identification via inverse analysis.
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4.2 2D beam structure

The next numerical example is a beam structure, loaded as illustrated in Fig. (10).
The investigated modification parameters are related to cross-section areas as well as
moment of inertia (independently) for each finite element. Identical material and geometry
parameters are assumed as in the truss example. The moment of inertia is equal to
J = 2.0833 · 10−6 m4. The structure is divided into 25 finite elements. For each one, the
modification parameters µA

i and µJ
i are evaluated. The measured strain responses (in this

case axial and bending components) collected by sensors located in every finite element
are used for evaluation of the modification parameters. The responses are numerically
simulated for harmonic load with the amplitudes P = 100N (axial force), M = 1Nm
(bending moment) and frequency ω = 2π [10, 40, 155, 250]T rad

s .

A
µ9 = 0.6
J
µ9 = 0.6 J

µ13 = 0.4

A
µ13 = 0.7 A

µ16 = 0.6
J
µ16 = 0.6 J

µ21 = 0.4

A
µ21 = 0.7 P

M

L = 1 m

Figure 10: Beam structure with introduced modifications.

Two scenarios of damage identification (VDM-F only) were performed, namely with
and without noise. Similarly to the previous example, the numerically calculated responses
of the modified structure were subjected to random perturbations up to 10% according to
formula (55). The results of inverse analysis are presented in Fig. 11 and Fig. 12, for both
modification parameters µA

i and µJ
i , respectively. The analysis without noise was stopped

when the decrease of the objective function achieved the level 10−4 (after 417 iterations).
For the case with noise, the same number of iterations was performed. In both cases, the
duration of inverse analysis was approximately 10 minutes on a 3 GHz PC.
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Figure 11: Identification of parameters µA
i for pure and noisy data.

5 Conclusions
The paper presents an application of the Virtual Distortion Method to Structural Health
Monitoring of skeletal structures (trusses and beams). Modifications of stiffness and mass
are considered for simulating damage. Harmonic excitation is assumed in order to transfer
the identification problem from the time domain to the frequency domain. Consequently,
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Figure 12: Identification of parameters µJ
i for pure and noisy data.

a quasi static problem is investigated with amplitudes of quantities to be analyzed only.
Damping is neglected, therefore non-resonance frequencies are the subject of analysis.

Strain is the quantity contributing to the objective function. The reason is that strains
vary much more smoothly in time compared to accelerations, giving reliable information
even with poor sampling. On the other hand voltage proportional to strains can be
measured with simple piezo-patch sensors, although there is always the matter of scaling.

The previous approach to SHM using VDM, posed in the time domain, has turned out
to be quite time-consuming. The presented frequency domain approach is indeed much
more efficient computationally, nevertheless it requires many more sensors to perform a
successful inverse analysis. The number of sensors can be compensated with more than
one excitation frequency contributing to the objective function. Also the position of
actuator can be changed for a given frequency, providing more data for the identification
algorithm.

The presented approach has turned out to handle noisy data quite well. The results
of identification are then inferior to pure simulation, but they are still satisfactory.

Further research will be concentrated on:

• validation of the methodology by conducting a series of laboratory tests for a 3D
truss structure, based on strain measurements captured by piezo-patch sensors,

• analysis of combinations of many excitation frequencies with various excitation po-
sitions to figure out optimal parameters for excitation,

• application of a more efficient optimization method (currently the steepest descent)
to the identification algorithm,

• improvements to the time domain approach - extending it to handle arbitrary real-
life excitations (e.g. induced by a train passing over a bridge),

• verification of the methodology in field tests
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